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Abstract

There is a strong possibility that environmental change (whether climate or land use) will

be manifest as changes in the size-frequency distribution of landslides in Maily-Say Valley,

Kyrgyzstan. The evolution of the landslide activity over the past 50 years has been analysed

on the basis of five landslide inventories of 1962, 1984, 1996, 2002 and 2007. Their size-

frequency analyses show that both the number and size of unstable slopes are increasing

from 1962 (162 objects) to 2007 (208 objects) and the power-law exponent is decreasing

over time. This might indicate that there is an evolution in size probably corresponding to

an increase of landslide-related hazards. Remote sensing and spatial analysis through the

image subtraction method based on NDVI allowed an accurate detection of new sliding

activation in that area. Another aim is to evaluate if and how Data Mining, with its wide

range of tools, may support automatic landslide recognition.
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Introduction

Kyrgyz Tien Shan is prone to different natural hazards

due to high seismicity, active tectonics, glacier retreat, and

locally intense rainfall (Torgoev et al. 2002). Due to the

high landslide activity along the rim of the Fergana Basin in

the southern part of the country (Roessner et al. 2002),

disasters causing social and economic losses occur almost

each year. Especially, the Maily-Say Valley can be considered

as a geological and environmental hazard hotspot within the

Tien Shan Mountains.

In order to detect those landslides, which might be danger-

ous for population, two methods are processed. Normalized

Differenced Vegetation Index (NDVI), including specific

spectral signature of new landslides, were calculated for

two images (taken at different times) and subtracted. The

second process was to evaluate how Data Mining, may

support automatic landslide recognition (e.g. from remote

sensing data), for susceptibility mapping or knowledge dis-

covery regarding the causes of landslides. Data Mining is the

application of specific algorithms, under acceptable compu-

tational efficiency limitations, for extracting patterns from

data (Fayyad et al. 1996). Here, the Data Mining approach

allows the prediction of landslides using classification methods

(Fernandez-Steeger et al. 2002).

R. Schlögel (*)
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Study Area

The Maily-Say Valley is situated in the north of the Fergana

Basin, about 25 km from the border with Uzbekistan. The

study area is located in a transitional zone bounded in

the northeast by the Talas-Fergana Fault (Fig. 1) and in the

western foothills of the seismically active Tien Shan moun-

tain belt. Bedrock geology is constituted of Cenozoic and

Mesozoic sedimentary rocks (Vandenhove et al. 2003; Havenith

et al. 2006). The relief is rough with heights culminating at an

altitude ranging from 700 to 4,000 m.

Over the last decades, the town of Maily-Say (estimated

population 10,000) has experienced a series of environmental

disasters related to earthquakes, landslides and groundwater

pollution (in particular by radioactive waste). According to

Abdrakhmatov et al. (2003), the seismic hazard of the region

is moderate to high. The last strong earthquake (Ms 6.2) hit

the region on May 15, 1992, and was located at about 30 km

south-southeast of the town of Maily-Say. Evidence for high

landslide activity and slope instability is observed throughout

the area. Today, more than 200 landslides are located in the

vicinity of the town, 80 of which are unstable and have the

potential to move under adverse conditions.

The largest landslide in the region, located about 7 km

east of the town of Maily-Say, is the Kochkor-Ata landslide,

was activated as a whole on April 13, 1994, forming an

almost 4 km long earth flow with a total volume of about

10 Mm3 (Roessner et al. 2002).

Data and Pre-processing

Multi-temporal, remotely sensed images were collected to

detect landslides and to determine their evolution. Aerial

photographs of the years 1962, 1984 and 1996 (panchromatic,

approximate 1:21,000 scale, roughly 2 m ground-resolution)

for the Maily-Say Valley were studied in detail and compared

with panchromatic and multi-spectral 10.3 by 11.1 km

Quickbird images of 2002 and 2007. The multi-spectral images

provide four spectral bands, (blue, green, red, near-infrared)

with a spatial resolution of 2.44 m; while panchromatic

Quickbird images have a spatial resolution of 0.61 m.

Quickbird imagery was pre-processed with the ENVI

software before being classified (unsupervised) through

the image subtraction in order to make radiometrically and

geometrically comparable 2002 and 2007 scenes. Factors

affecting geometry can be related to the sensor system,

due to variations in platform altitude, in the sensor view

angle or caused by the rotation of the earth (Gupta 2003).

The images were orthorectified on the basis of a 20 m

resolution Satellite Pour l’Observation de la Terre (SPOT)

Fig. 1 Topographic map of the Kyrgyz Tien Shan and neighbouring regions. The location of Maily-Say (MS) and the capital city (Bishkek)

is indicated by a black triangle. The map also shows all historical and instrumental earthquake events with Ms > 5.5 (Schlögel et al. 2011)
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digital elevation model (DEM) and georeferenced to UTM

zone 43 north. Panchromatic and multi-spectral images were

co-registered separately to allow superimposition of multi-

spectral images. In addition, the images were normalized

using a relative radiometric correction process. Gains and

offsets were applied to create a normalized image of the

2007 scene while the 2002 image is taken as reference as it

shows the larger contrasts (Jensen 1996).

Methods

Landslide Inventories

Landslide inventories are the simplest form of landslide

susceptibility mapping (Guzzetti et al. 1999). Two new land-

slide inventories were created by remote sensing analysis

from the Quickbird images for theMaily-Say Valley, verified

by field observations and used in specific techniques of land-

slide detection described further. Using Geographical Infor-

mation System (GIS) tools, a total of 189 and 208 landslides

were mapped from 2002 and 2007 images, respectively.

The initial inventories were created by local scientists

through field surveys and air photo interpretation, and corrected

by comparison with recent data to make them accurate

and comparable (Brardinoni et al. 2003). Previous landslide

inventories (already used by Havenith et al. 2006) were

improved to produce new ones for the years of 1962

(162 landslides), 1984 (206 landslides) and 1996 (222

landslides). All five inventories contain only landslides that

could be identified from remote imagery of a certain year

and, therefore, are likely to have been (re-)activated in recent

times.

Evolution of Landslides

The landscape in theMaily-Say Valley is continuously chang-

ing owing to the high landslide activity. The total area affected

by landslides increased from 1.0 % (~1.2 km2) in 1962 to

3.3 % in 1984, 4.5 % in 1996, 4.3 % in 2002 and 5.6 %

(~6.5 km2) in 2007 compared to the entire investigated area

along theMaily-SayValley. The slight decrease of 0.2% from

1996 to 2002 is likely to be related to the changed dataset used

for mapping (aerial photographs and existing inventories in

1996 and before, Quickbird imagery for 2002 and 2007). The

mean landslide size increased from 15,170 m2 in 1962 to

31,000 m2 in 2007. Landslide size is quite variable; it ranges

from 335 m2 for the smallest detected landslide to 348,425 m2

for the largest one in 2007. The evolution of the formation of

the largest mass movement is marked by the formation of

landslide Tektonik in 1992. Due to this, the maximum land-

slide size increased from 110,000 m2 in 1984 to 325,000 m2 in

1996.

NDVI Subtraction

Methodology
The NDVI, initially developed for classification of vegeta-

tion type and health, is here applied to detect fresh transla-

tional mass movements (Chang and Liu 2004) such as

debris flows and earth flows which are quite common in

Maily-Say valley. It is calculated on the basis of the

red and near-infrared bands which depend strongly on the

presence of vegetation, according to the following equation:

NDVI ¼ NIR� Rð Þ= NIRþ Rð Þ
This processing allows for improved differentiation between

spectrally-different surfaces, compared to the use of one

band only. Further, band ratioing greatly mitigates shadow

effects that sometimes make visual interpretation difficult.

The values of this index, also an indicator of biomass, are

in the range between � 1 and 1; negative values indicate

bare land and positive values indicate a greater level of

photosynthetic activity due to the presence of vegetation

(often included between 0.2 and 0.8).

Image differencing, or subtraction, is based on a pair of

co-registered raw or transformed images of the same area

collected at different times. The process simply subtracts

pixel values on a pixel-by-pixel basis to generate a third

image composed of numerical differences between the

pairs of pixels (Ridd and Liu 1998).

The process leading to a new image, using the available

Quickbird satellite images of these two periods, can be

quantified by the following the equation (here applied to

the b-band of the images):

Dxbij ¼ xbij t2007ð Þ � xbij t2002ð Þ (1)

where xij
b (t2007) and xij

b (t2002) are the digital numbers

(DNs) of a pixel (i,j) of b-band for the 2007 and 2002

images, respectively. In the new image (Dxij
b), positive

or negative values denote the region whose radiation value

has increased or decreased, respectively, between 2002

and 2007; a 0-value corresponds to no change in the region.

A suitable threshold value allows us to distinguish the areas

of ‘real’ changes from those marked by the impact of random

factors. One interesting application of this method is to apply

it to images acquired before and after landslide events in order

to identify landslides according to their NDVI value (Lin et al.

2005). In the frame of this study, we analysed where new

landsides appeared or old ones were reactivated between 2002

and 2007. A number of 11 classes with 7 negative classes give

the most representative results to recognise change in the

vegetation canopy due to the disrupted vegetation because of

landslide activation. The pre- and post-NDVI images have

been created following the equation:

DNDVI ¼ NDVI2007 � NDVI2002 (2)
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Data Mining Approach

Data Mining uses computational techniques (algorithms)

from advanced statistical methods and employs pattern rec-

ognition such as neural network techniques. Data Mining

also allows discovering previously unknown relationships

among the data (pragmatic approach). In contrast to classical

modelling attempts or statistical analysis, Data Mining

is output-driven. This means that each successful strategy

is allowed if it fulfils the previously defined aims and

respects the requirements of the applied tools.

Since this method can handle large input datasets, multiple

factors such as spectral information (from Quickbird images),

recent landslide inventory, and data from the DEM (slope,

curvature, topographic roughness index, landform index)

were used as input data. The preparation of the data for

modelling requires generally various adjustments, which

have to be made to the data prior to modelling. Datasets

were compiled on a GIS platform and transformed into raster

data. The powerful sample command from ArcInfo GRID

was used to export the raster in a flat file (like CSV for

comma separated values) that could be directly imported in

Data Mining tool PASW Modeler. The software then guides

the planning in a systematic way to the goal of the study:

detecting landslide. It focuses on the process of running data

through a series of nodes, referred as a stream. Whereas ANN

(Fernández-Steeger et al. 2002; Falaschi et al. 2009) and

more recently Bayesians networks (Braun et al. 2011) have

successfully been implemented for landslide susceptibility

analysis, decision trees (C5.0, CHAID) were developed for

landslides recognition in the framework of this study. The

models use in advance digitised landslides to train and

develop the model in a well-known area. Afterwards the

model is tested in another area to evaluate the model skills.

Results

Size-frequency Distribution of Landslides

The frequency-area distribution quantifies the number of

landslides per class of surface area. Following the method

of Malamud et al. (2004), the size-frequency relationships

of these five datasets described earlier were analysed in

terms of the frequency density function ( f ) of the landslide

areas (AL) using the following equation:

f ALð Þ ¼ dNL=dAL (3)

where dNL is the number of landslides with areas between

AL and AL + dAL. dAL is the width of the respective

area class. In a log-log graph (Fig. 2), this function shows a

more-or-less linear tail (in log-log graph) which can be fit

by a power-law (Turcotte 1997). A rollover (inflection) is

observed for smaller events and objects, here represented by

the decreasing frequency density for very small landslide

areas (Malamud et al. 2004; Havenith et al. 2006). The

deviation from the power-law trend on the left part of

the graph is partly explained by undercounting of the

small landslides. As discussed by Malamud et al. (2004),

many factors cause the incompleteness, such as the quality

of imagery, landslide age and freshness and the potential

removal of geomorphologic and spectral properties, the

experience of the scientist involved. Pelletier et al. (1997)

attributed the rollover shown by the probability density

function of landslide areas, to a transition from a resistance

controlled chiefly by friction (for large landslides) to a

resistance controlled by cohesion (for small landslides).

Here, only the linear trend of the size-frequency relation-

ships (e.g. for a size greater than the rollover, which

is roughly 10,000 m2) of the five inventories has been

considered, which should be complete above that threshold.

The fits of these linear tails of a complete relationship

by a power-law are characterized by coefficients of determi-

nation, R2, larger than 0.8.

From the size-frequency analysis presented in Fig. 2, it can

be seen that the trends slightly but constantly change over

time. The related exponent-values continuously decrease from

1.93 in 1962 to 1.73 in 2007. The value obtained for the 2002

dataset, 1.8, is similar to the power-law exponent determined

by Havenith et al. (2006) for Maily-Say landslide records

obtained from field observations in 2003, which is equal to

1.9. This confirms the observed trend indicating the more

frequent formation of large landslides (in terms of objects

and not in terms of events or movements) in the region. The

increasing frequency of large landslides can be related to the

growth of existing landslides or the coalescence of smaller

landslides, as already suggested by Havenith et al. (2006). The

latter process probably also contributes to the fact that the

number of small landslides is decreasing over time.

NDVI Subtraction
The results of the NDVI calculation for the 2007 Quickbird

image (Fig. 3) show that values close to zero represent

landslides partly denudated or sites covered by sparse vege-

tation. The histogram analysis of the NDVI map of the

entire zone shows that, the average NDVI is lower in 2007

(NDVI of 0.26) than in e (NDVI of 0.32). This difference

may be due in part to the increasing landslide activity and

to minor differences in vegetation growth stage. The mass

movements of the Valley are generally complex combining

deep-seated deformation with surficial erosion. Stable bare

soil may be misclassified as landslides.

Figure 3 shows low NDVI where no landslide is located,

but some of these false positives can be excluded from

the difference map. The NDVI 2007–2002 subtraction maps
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show that in general, a strong decrease of NDVI could be

attributed to the loss of vegetation due to recent activation of

landslides. However, a simple correlation between the

decrease of vegetation and the presence of a landslide cannot

be established. Each landslide has particular characteristics

due to its type of movement (fall, topple, slide, slump, spread

or flow) and its type of material (rock, debris, earth material).

In addition, the age of a landslide must be considered. With

this method, primarily, fresh earth flows can be detected.

By visual analysis, it seems that new activations are

represented by the classes 7 to 10, i.e. by the NDVI

change values of �0.1 to �0.5. A statistical analysis

shows that 88 % of the landslide areas are marked by

NDVI change values of 0.0 to �0.5. However, only

27 % of the pixels inside the landslides belong to the

NDVI change values of �0.1 to �0.5. This shows that

only parts of the landslides can be clearly detected by the

method.

Data Mining Using Decision Trees
The CHAID model was largely used to recognize if a pixel

corresponds to a landslide area or not in theMaily-Say Valley.

In this study, additionally advanced parameters were taken

into account to improve the modelling. This are the band 2 of

2007 and 2002 images, the slope, the topographical roughness

index and the aspect. They contribute to about 80 % of the

detections of landslide and no landslide using the CHAID

algorithm as modelling tool. In addition, other types of models

have been created and tested trying to improve the results.

With the C5.0 model, the obtained results are quite good and

Fig. 2 Frequency density function for landslide areas in the Maily-Say Valley in 1962 (162 objects), 1984 (206 objects), 1996 (222 objects), 2002

(189 objects) and 2007 (208 objects)
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probablymore relevant to detect landslides but it is often easier

for the models to detect places where there are no landslides.

Following a partition at random of 30 % for testing

and 70 % for training, concentrated on landslides, the

model is only 69 % relevant. In inverting this partition

(training area becoming testing area), the model accuracy

reveals a more performing model with 82 %. Unfortunately,

only 75 % of the pixels are well classified in the training

model compared to 79.5 % obtained if we consider the

test model. But the latter allows us to detect landslides in a

defined environment which is themost interesting in detection.

Discussion and Conclusion

All statistics of the evolution of landslides indicate that the

hazard is likely to increase in the Maily-Say Valley. Size-

frequency analyses applied to landslide datasets of 1962,

1984, 1996, 2002 and 2007 show that the exponent-values

of the power-law fits to the linear tails continuously decrease

from 1.93 in 1962 to 1.73 in 2007. This reveals a trend towards

the formation of increasingly larger landslides on the Maily-

Say slopes.

The size-frequency behaviour of the landslides in Maily-

Say can be compared with some observations made by other

researchers concerning landslide distributions. All exponent-

values obtained for the five inventories are well below those

calculated by several other researchers, e.g., byMalamud et al.

(2004) studying landslide inventories of landslide types and

distributions as well (the values are between 2.11 and 2.48).

However, the exponent values of the five inventories presented

here compare well with those calculated by Chen (2009) for

the landslides triggered by the 1999Chi-Chi earthquake (value

of 1.8). He noted that the exponent value increased for post-

seismic landslides triggered by Typhoons in 2001 and 2004

(values of 2 to 2.1). This change of the exponent values of

about 0.2–0.3 considered as significant by Chen (2009) is

similar to the one observed for the Maily-Say landslides.

Here, we relate the continuous decrease of the exponent

value of the landslide size-frequency distribution to the growth

and coalescence of existing landslides which are relatively

more frequent than the formation of new small slope

instabilities. In this regard, it can be assumed that

the changing size-frequency distribution of the landslide bod-

ies in Maily-Say is related to the increasing density of slope

instabilities.We think that a certain landslide density threshold

has been surpassed, beyond which landslide occurrences

become interdependent and are not only related to changing

environmental conditions and external triggers. Furthermore,

power-law exponent-values decreasing over time could indi-

cate a trend towards a cataclysmic situation – this means that in

near future larger parts of slopes could fail catastrophically.

However, to be able to confirm this, we will also quantitatively

assess changes in the landslide sizes and continuously monitor

landslide reactivations in hazardous places. Therefore, auto-

matic detection methods are needed.

Fig. 3 NDVI of the radiometrically corrected 2007 Quickbird

image of the Bedre Coupola area where bluish colours represent

low NDVI and greenish to yellow colours represent high NDVI,

and the 2007 landslide inventory for the zone (see also an example

of denudation processes with low NDVI outlined by a dashed
ellipse)
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As many new landslides are translational and constituted

by clay and loess deposits, a change detection method, based

on image subtraction to detect (re)activations was devel-

oped. Differencing of NDVI values determined from the

multispectral Quickbird images (NDVI2007 � NDVI2002)

allowed us to outline zones with removed vegetation due

to active slope failures considering inherent errors of com-

mission in mapping. This analysis allows us to demonstrate

that the multi-temporal differencing method is quite useful

to detect both (re)activations of landslides and stabilizing

slopes (marked by re-vegetation). However, it is not

well adapted to map landslides or to create an inventory of

them. For that purpose, a uni-temporal method is more

appropriate such as Data Mining, which is able to combine

many different parameters influencing slope stability and/or

affected by the presence of landslides (e.g. spectral bands,

curvature, slope, roughness). The data mining approach is

also promising for the task of predicting landslide suscepti-

bility but it requires more time and mathematical skills.
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Schlögel R, Torgoev I, De Marneffe C, Havenith HB (2011) Evidence

of a changing size-frequency distribution of landslides in the

Kyrgyz Tien Shan, Central Asia. Earth Surf Proc Landf 36(12), pp

1658–1669

Torgoev IA, Alioshin YG, Havenith H-B (2002) Impact of uranium

mining and processing on the environment of mountainous areas

of Kyrgyzstan. In: Merkel BJ, Planer-Friedrich B, Wolkersdorfer C

(eds) Uranium in the aquatic environment. Springer, Berlin/

Heidelberg/New York, pp 93–98

Turcotte DL (1997) Fractals and chaos in geology and geophysics,

2nd edn. Cambridge University Press, Cambridge, p 398p

Vandenhove H, Quarch H, Clerc J, Lejeune J, Sweeck L, Sillen X,

Mallants D, Zeevaert T (2003) Remediation of uranium mining

and milling tailing in Maily-Say district of Kyrgyzstan. Final report

of EC-TACIS Project N�SCRE1/N�38, Vandenhove H Q H,

Mol (Belgium), 614p

Assessment of Landslides Activity in Maily-Say Valley, Kyrgyz Tien Shan 117


	Assessment of Landslides Activity in Maily-Say Valley, Kyrgyz Tien Shan: 
	Introduction
	Study Area
	Data and Pre-processing
	Methods
	Landslide Inventories
	Evolution of Landslides
	NDVI Subtraction
	Methodology

	Data Mining Approach

	Results
	Size-frequency Distribution of Landslides
	NDVI Subtraction
	Data Mining Using Decision Trees


	Discussion and Conclusion
	References


