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Ongoing changing climate has raised the attention towards weather driven natural hazards. Local floo-
dings and debris flows following exceptional downpours often come without any adequate warning
and cause heavy tolls to the human society. This work proposes a novel flood alert system for small catch-
ments prone to flash flooding, capable of monitoring a large portion of the European domain. Operational
streamflow simulations are produced through distributed hydrological modeling of ensemble weather
forecasts. A long-term reforecast dataset is run through the same hydrological model to derive coherent
warning thresholds. These are compared with operational discharge ensembles in a threshold exceedance
analysis to produce early warnings.

A case study in the southern Switzerland is tested over a 17-month period and system skills are eval-
uated by means of different quantitative and qualitative analyses. Results from three different predictors
derived from the streamflow ensemble are shown and compared, also by accounting for the persistence
of lagged forecasts. Significant improvements in predicting discharge thresholds exceedance are achieved
by fitting gamma probability distributions to the raw ensemble. Further discussion underlines the limits
of predictability of extreme events in small catchments due to the comparatively coarse space–time res-
olution of current weather forecasts.

� 2012 Elsevier B.V. All rights reserved.
1. Introduction

Advances in the skill of Numerical Weather Predictions (NWPs)
have fostered the creation of a number of flood forecasting and
early warning systems based on Ensemble Prediction Systems
(EPS) as inputs (Cloke et al., 2009; Cloke and Pappenberger,
2009; Thielen et al., 2009). Recent work shows that operational
flood alert systems driven by hydrological EPS (HEPS) are currently
capable of detecting upcoming flood events in large river basins up
to 10 days in advance (Hopson and Webster, 2010; Pappenberger
et al., 2008). Such warning lead times are of crucial importance
to both increase the preparedness of the population and coordinate
the crisis management with timely intervention plans.

Flood warnings can only be effective if the forecasting system
provides sufficient skill and consistency (Pappenberger et al.,
2011; Persson and Grazzini, 2007). Recent works show that taking
into account the persistence of lagged forecasts can reduce the
number of false alarms and thus improve the performance of warn-
ing systems based on threshold exceedance (Bartholmes et al.,
2009; Dietrich et al., 2009). In addition, lagged forecasts increase
ll rights reserved.
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forecast consistency (Persson and Grazzini, 2007). The European
Flood Alert System (EFAS) is one example of a medium range flood
forecasting system in which lagged forecasts are used successfully
(Thielen et al., 2009).

EPS and Limited-area EPS (LEPS) are applied with increasing fre-
quency for riverine flood forecasting (Rotach et al., 2009). Fewer at-
tempts have been specifically focused on flash flood early detection
(Addor et al., 2011; Marty et al., 2008; Philipp et al., 2008; Reed
et al., 2007; Younis et al., 2008), as the space–time resolution of
weather predictions is often too coarse to reproduce unbiased
streamflow estimates at the scale of small catchments. In fact,
the skill of those systems much relies on the estimation of coherent
warning thresholds, which are particularly difficult to reproduce at
the scales of interest of flash floods. Firstly, many operating mete-
orological gauging networks are not dense enough to capture the
small-scale horizontal and vertical variability of storms producing
flash floods – this is if any gauge exists at all for these events which
take place in small watersheds in mountainous areas. In this re-
gard, weather radars have reached widespread coverage over large
areas in Europe and will become an interesting option for use, once
datasets of some years are collected. Secondly, seamless time ser-
ies of meteorological variables are usually not available at fine (i.e.,
sub-daily) temporal resolution for time spans long enough to
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reproduce a robust climatology. Thirdly, the analysis of extreme
events should be based on climatological datasets (e.g., 20 years
or longer) in order to estimate reliable flood flows linked to low
probability of occurrence.

Previous work has shown the dramatic improvement of meteo-
rological forecasts after calibration with long-term reforecast data-
sets (Fundel et al., 2010; Hamill et al., 2006). Yet, little effort has
been put to transfer the same idea to correct streamflow predic-
tions driven by weather forecasts, particularly at the scale of inter-
est of flash floods. In this study we describe a new flash flood alert
system, based on hydrological simulation of probabilistic ensemble
forecasts. Coherent warning thresholds are derived from a long-
term reforecasts dataset generated with the same model used for
operational forecasts. The system is hereafter referred to as EFAS-
FF (European Flood Alert System for Flash Floods).

The objective of this paper is to propose a novel predictor for
flash floods and compare it to more traditional methods. Also, we
analyze the impact of lagged forecasts on the forecast performance
and suggest that any modern flash flood forecasting system will
have to rely on lagged forecasts as additional source of
information.

A schematic description of the data and the different steps in-
volved in the early warning system is presented in Section 2, while
Section 3 shows the evaluation methods used to test the system
performance for a selected case study. Results are shown in Section
4 and discussed in Section 5, while concluding remarks are drawn
in the last section.
2. Data and methods

2.1. A European flash flood alert system

EFAS-FF is aimed to provide a tool for improving preparedness
to small size catchments prone to flash floods, where flood events
are generated by severe downpours producing high rainfall inten-
sities over short durations. EFAS-FF is activated by positive signals
from the European Precipitation Index (EPIC, Alfieri et al., 2011b),
which has already been successfully used in monitoring potential
flash flood warnings at the continental scale. The EPIC index runs
on daily basis on a 5 million km2 area, covering most of the Euro-
pean domain, and gives an indication on the severity of upcoming
rainfall events. It compares forecasted accumulated rainfall, over
typical durations for flash floods, with corresponding reference
thresholds derived from the climatology. Where a positive signal
is detected from EPIC, a catchment-scale hydrological simulation
is activated at 1-km resolution, by taking as initial conditions the
operational results provided by EFAS simulations, run at 5-km res-
olution. Ensemble weather forecasts are run through a distributed
hydrological model to predict discharges, namely, one hydrological
simulation for each member of the meteorological ensemble. These
are compared to the reference climatology through a threshold
exceedance analysis to derive probability-based warnings. The
advantage of such a cascade of approaches is that the location of
the warnings and the accuracy of the discharge predictions are im-
proved given limited CPU resources. In addition, model version
developed specifically for flash flood applications can be nested
into a more general framework.

Three discharge warning thresholds are calculated following
the same approach used in the European Flood Alert System and
are named Medium, High and Severe alert. In details, a meteorolog-
ical climatology based on weather reforecasts covering a large por-
tion of the European domain (see Section 2.2) is routed through a
hydrological model at 1 km resolution to derive a continuous dis-
charge climatology. For each grid point on the river network, an-
nual maxima of discharge are extracted from the climatology and
used to estimate warning thresholds. The mean of the annual max-
ima is considered as Medium threshold for flood warning, as it usu-
ally corresponds to peak flows around the bank-full conditions
(Carpenter et al., 1999). Although it does not correspond to signif-
icant flooding conditions, it is the first level of the warning system
and it is useful for monitoring upcoming high flow events poten-
tially increasing in severity. It is a robust indicator as it is based
only on the sample of annual maxima, with no assumptions on
their statistical distribution. In addition, a Gumbel extreme value
distribution is hypothesized for the annual maxima of discharge
at each point, and peak flows corresponding to return periods of
5 and 20 years are chosen as High and Severe warning thresholds.
A similar approach is used to derive thresholds of heavy rainfall to
be used to calculate the EPIC index.

EFAS-FF makes use of a distributed hydrological model named
LISFLOOD, described in detail by Van der Knijff et al. (2010). LIS-
FLOOD is a hybrid between a conceptual and physically based rain-
fall–runoff model combined with a routing module for river
channels. It simulates canopy and surface processes, snow accu-
mulation and melting, soil and groundwater processes and flow
in the river network. LISFLOOD has been specifically designed for
large river basins (De Roo et al., 2001) but has shown positive re-
sults in applications to smaller watersheds (e.g., Alfieri et al.,
2011a; Younis et al., 2008).

The proposed EFAS-FF system is designed to run hydrological
simulations at 1-km spatial resolution and 3-h time resolution,
which is currently the optimal tradeoff between model resolution
and computational feasibility. It is fit to catchments with drainage
area up to 1000–2000 km2 where the most hazardous events are
induced by storms of duration up to 24 h (Gaume et al., 2009; Reed
et al., 2007). The error induced by using initial conditions at 5-km
resolution for the 1-km resolution model was shown to be often
positive but negligible for high flow conditions (Alfieri et al.,
2010). In particular, for flash-flood-prone catchments, the effective
rainfall producing flood peaks is entirely included in one meteoro-
logical forecast. Therefore, the initial conditions at coarser resolu-
tion that are used to initialize each hydrological simulation, are
mostly useful to represent those runoff components linked to slow
response (i.e., soil moisture, snow cover, cumulative interception,
groundwater storage) rather than the initial discharge/water stage
in the drainage network.

2.2. Meteorological data

Meteorological forecasts were provided by the Consortium for
Small-scale Modeling (COSMO). The Limited-Area Ensemble Pre-
diction System (COSMO-LEPS) is the operational 16-member
ensemble forecast of COSMO (Marsigli et al., 2005). It is run once
a day at 12:00 UTC and spans 132 h. Operationally, the two latest
51-member ensemble forecasts of the European Centre for Med-
ium-range Weather Forecasts (ECMWF) are combined in a 102-
member super-ensemble, from which 16 representative members
are selected through cluster analysis technique and used to initial-
ize the COSMO model run. Forecast fields of precipitation, 2 m
temperature and potential evapo-transpiration are provided on a
rotated spherical grid covering most of southern and central
Europe, with horizontal resolution of 0.09� � 0.09� (about
10 km � 10 km) and temporal resolution of 3 h.

In addition, a continuous meteorological climatology was cre-
ated from a set of 30-year reforecasts (Fundel et al., 2010), which
was made available from the COSMO Consortium. It consists of a
set of deterministic reforecasts, initialized every 3 days from
ECMWF control run, by using ERA 40 re-analysis dataset (Uppala
et al., 2005) as initial and boundary conditions. A continuous cli-
matology is obtained by attaching together the first three days of
data of each forecast, to produce a seamless dataset with the same
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spatial and temporal resolution of operational COSMO-LEPS fore-
casts. Hereafter, it is referred to as COSMO-30y. Daily COSMO-LEPS
forecasts at 10-km resolution were available from 7th July 2008 to
30th November 2009.
2.3. Case study

To evaluate the performances of the proposed warning system,
we carried out a simulation experiment by running the system
continuously (i.e., mimicking the daily operational runs in hindcast
mode) on a test catchment using COSMO-LEPS forecasts as input
data, and comparing the resulting ensemble discharges with ob-
served values at the outlet. The considered case study is the Verza-
sca, an alpine catchment in the southern Switzerland. It is
characterized by a V-shaped narrow valley with steep slopes, shal-
low soils (mostly <30 cm) and elevation ranging between 2870 and
490 m a.s.l. at the gauging station of Lavertezzo (upstream area
AU = 186 km2). The catchment area is little affected by urban settle-
ments and human activities. However, the artificial Vogorno Lake
lies just downstream the river gauge. It is bounded by a 220 m high
dam which is mainly operated for hydropower production. Forests
(30%), shrub (25%), rocks (20%) and alpine pastures (20%) are the
predominant land cover classes. The hydrological regime is gov-
erned by snowmelt in spring and early summer and by heavy rain-
fall events in fall (Wöhling et al., 2006). Baseflow in winter can be
less than 1 m3 s�1, while the mean annual flood peak in Lavertezzo
is about 400 m3 s�1.

Seamless hourly discharge observations at Lavertezzo were pro-
vided by the Swiss Federal Office for the Environment (FOEN), to-
gether with a set of 19 annual maxima of observed discharge
from 1990 to 2008. Fig. 1 shows a map of the Verzasca catchment,
together with the 1-km drainage network considered by the LIS-
FLOOD model.

The hydrological simulation was run on the Verzasca catchment
set up at 1 km resolution, with a model calculation sub-step of
30 min and output maps stored every 3 h. Meteorological input
data were COSMO-LEPS forecasts, ranging 132 h each, for 512
consecutive days, starting in July 7th, 2008. For each hydrological
Fig. 1. Map of the Verzasca catchment (Switzerland) and 1-km drainage network for
forecast, simulated ensemble discharges at the outlet are extracted
and split according to the lead time between 1 and 5 days. Fore-
casted and observed discharges are first normalized by the corre-
sponding mean of the annual maxima, namely, the mean of the
simulated and of the observed maxima, respectively. Previous
works (Alfieri et al., 2010) have shown the advantages of the nor-
malization, such as the reduction of bias in simulated discharge,
due to modeling small catchments at a spatial resolution compara-
tively coarse with respect to their size. Also, similar findings were
drawn by Norbiato et al. (2009) in the context of the Flash Flood
Guidance (FFG) approach. The normalized discharge KQ is an intui-
tive indicator of the state of the river in terms of flood warning (i.e.,
KQ = 1 corresponds to the mean annual maxima of discharge) and
can be easily compared at different locations and different catch-
ments. As an example, we show in Fig. 2 a comparison between nor-
malized observed and simulated ensemble discharges at the
catchment outlet, for a fixed lead time of 4 days (i.e., 72–96 h
ahead). It is worth noting that this simulation is meant to test the
EFAS-FF system in an operational way, therefore no specific calibra-
tion was carried out on the hydrological model. Operationally, the
same model setting would be applied to any catchment in the
considered domain, which boundaries are set by the meteorological
input data. In addition, this study aims at testing the limits of pre-
dictability of such system, by choosing a catchment with area of the
same magnitude as the meteorological input (i.e., 10 � 10 km2).
Sangati and Borga (2009) showed that the error in normalized
rainfall and normalized peak discharge becomes significant when
the rainfall resolution is similar to the characteristic basin length.
However, the proposed approach is totally independent of in situ
measurements, so the evaluation carried out in the following allows
one to extrapolate objective findings of wide validity.
2.4. Predictors for flash flood detection

Three kinds of predictor are created from the discharge ensem-
ble forecasts and their performance towards the observations are
analyzed and compared together. They are described in the
following.
the simulated model. The catchment outlet in Lavertezzo is shown with a circle.



Fig. 2. Normalized observed and simulated ensemble discharges at Lavertezzo, for the simulation period (4 day lead-time).
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1. The first predictor is the full ensemble of discharge forecasts as
obtained from the hydrological simulation, sorted from the low-
est to the highest value for each time step. In the following it is
referred to as EPS. It provides probabilistic predictions, though
its robustness is likely to decrease in the upper and lower quan-
tiles, which can be heavily affected by outliers.

2. The ensemble mean is the second option chosen, being the most
widely used deterministic predictor derived from an EPS.
Despite its robustness, due to considering the full set of mem-
bers, it gives no information on the ensemble spread. In addi-
tion the ensemble mean loses information on the temporal
development, which is given by individual ensemble members.
However, this is irrelevant in the adopted decision framework,
which is based on probabilistic threshold exceedance for each
individual forecast horizon.

3. The third considered predictor is obtained by fitting an analyt-
ical probability distribution to each ensemble of 16 members,
corresponding to every selected time-step and forecast lead-
time. While it can be argued that the fitting generates addi-
tional uncertainty, on the other hand it provides a probabilistic
predictor with increased robustness, compared to the EPS, par-
ticularly in the tails of the distribution.

While the first two predictors have been widely used and dis-
cussed in the literature (see Cloke and Pappenberger, 2009 and ref-
erences therein), the third option is proposed and tested within
this work. In details, each ensemble is inferred with a 2-parameter
gamma distribution by means of L-moment estimators. The gam-
ma is a family of very flexible probability distributions which have
long been used to model many natural phenomena such as rainfall
and runoff data, including extreme events (Bobée and Ashkar,
1991; Loucks and van Beek, 2005). The probability density function
(pdf) of a gamma-distributed random variable x is defined as:

f ðxÞ ¼ xa�1e�x=b

baCðaÞ for x P 0 and a;b > 0; ð1Þ

where a is the shape parameter, b the scale parameter, and C(�) de-
notes the gamma function

CðaÞ ¼
Z 1

0
ta�1e�tdt: ð2Þ

Parameters a and b are estimated by equaling the first two sam-
ple L-moments with those of the gamma distribution (k1, k2) given
by the following equations (see e.g., Hosking, 1990):

k1 ¼ ab; ð3Þ
k2 ¼ p�1=2bC aþ 1
2

� �
=CðaÞ: ð4Þ

L-moment estimators are known for being nearly unbiased for a
wide range of sample sizes and distributions (Vogel and Fennessey,
1993), and become particularly useful for short samples as in the
present work (i.e., 16 values for each fitting).
3. Evaluation methods

A single index is unlikely to provide deep understanding of all
the different properties of a forecast system (Napolitano et al.,
2011). In this paper we show a number of different analyses.
3.1. Visual assessment

Visual assessment of flow hydrographs is a standard and quick
method to illustrate differences in behavior. It gives useful indica-
tions on systematic problems in a forecast chain.
3.2. Probability plot

When comparing the observations with the simulated dataset
an informative perspective is given by considering their probability
distributions. Ideally, the probability density function pi(KQ,F) of the
predictions should match that of the observations pi(KQ,O). The
hypothesis H0: pi(KQ,F) � pi(KQ,O) can be verified by defining the
probability integral transform zi = Pi(KQ,O), that is, the cumulative
distribution function of the predictions KQ,F in correspondence of
each observed value. Under the hypothesis H0, the sample of zi fol-
lows a standard uniform distribution U(0,1). A useful graphical
representation to verify the uniformity hypothesis is obtained by
plotting the set of sorted zi values versus their theoretical quantiles
ji taken from a standard uniform distribution, which are calculated
by simply dividing the rank of each observation Ri by the sample
size: ji = Ri/n. The benefit of these graphs is twofold: first, the shape
of the resulting curve and its departure from the bisector reveals
different qualitative information on the estimation skill (see e.g.,
Laio and Tamea, 2007). Second, deviations from the uniformity
can be quantified objectively through statistical tests at selected
significance levels by using the Kolmogorov statistic. This graphical
tool accounts for the full probability distribution of theoretical and
forecasted values, therefore it should not be confused with the
apparently similar reliability diagram (e.g., see Wilks, 2006), used
for the verification of probability forecasts of a binary predictor.
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3.3. Mean squared error and variance

The quantitative performance of the three predictors against
the observations can be expressed by making use of the relation
between the mean squared error (MSE), the variance (r2) and the
bias (D) of a variable x,

MSEðxÞ ¼ r2ðxÞ þ D2ðxÞ; ð5Þ

where x are the estimation residuals between the forecasted (KQ,F)
and the observed (KQ,O) normalized discharge: x = KQ,F � KQ,O. The
mean squared error and the variance are calculated from all the n
residuals with the same lead time and estimation quantile:

MSEðxÞ ¼ 1
n

Xn

i¼1

ðKQ ;F � KQ ;OÞ2i ; ð6Þ
r2ðxÞ ¼ 1
n

Xn

i¼1

ðKQ ;F � KQ ;OÞ2i ; ð7Þ

where KQ ;O is the sample mean of the observed time series. The
mean squared error and variance can be plotted in the same graph.
The difference between the two lines represents the squared bias of
the estimation residuals (D2(x)). This graphical representation is
very informative, as it allows one to distinguish the contribution
to the total error of the bias, which measures the reliability, and
of the variance, which measures the resolution of the predictor. This
kind of graph is particularly useful in flood early warning systems
based on threshold exceedance analysis, where ‘‘deterministic’’
decisions have to be made on the basis of probabilistic information
at selected quantiles. The system performance depends much on its
reliability (i.e., its bias) and in turn by the choice of appropriate
warning thresholds. This is substantially different to flood forecast-
ing systems that focus on the probability distribution of the esti-
mates and the uncertainty analysis, and in turn on improving the
resolution of the system (i.e., the minimization of its variance).
3.4. ROC area

The previous scores provide a quantitative evaluation of the
forecasted discharge towards the observed one but they are not
representative of the performance of a warning system based on
threshold exceedance analysis. Indeed, the performances of such
a system are determined by its reliability in the range of high flows,
in the proximity of warning thresholds. The ultimate goal is to de-
tect all the events exceeding a certain threshold without providing
false alarms, and its outcome is translated in the issuing or not
issuing a (flood) warning. A number of scores have been proposed
and described in the literature to evaluate the skills of both deter-
ministic and probabilistic forecasts for threshold exceedance anal-
ysis (see e.g., Jolliffe and Stephenson, 2003; Wilks, 2006, Chapter
7). In this work, we focus on testing the skill of the two probabilis-
tic predictors, the EPS and the gamma fit, through Relative Operat-
ing Characteristic (ROC) curves. ROC curves have been widely used
to measure the skill of dichotomous forecasts based on probabilis-
tic information, as they plot the empirical relation between the Hit
Rate (HR) and False Alarm Rate (FAR) for different probability
thresholds. An interesting property is that the area under the
ROC curve, hereafter referred to as AROC, can be used as skill score
to assess the overall system performance through just one value. In
particular, the range of interest measured by AROC is between
AROC = 0.5, which corresponds to random forecasts, and AROC = 1
for perfect forecasts (while AROC = 0 means forecasts perfectly op-
posed to the observations).
3.5. Rank histogram

A rank histogram analyzes the location of the verifying obser-
vations in an ensemble system. In particular, it shows the proba-
bility density function of the observations versus the
corresponding rank of the interval between each couple of con-
secutive EPS members in which each observed value falls in. It
shows the sum of the ranks of individual observations in a corre-
sponding forecast. In an ensemble with perfect spread, each
member represents an equally likely scenario, so the observation
is equally likely to fall between any two members. A flat rank his-
togram does not necessarily indicate a good forecast; it only mea-
sures whether the observed probability distribution is well
represented by the ensemble. A U-shaped histogram indicates
that the ensemble spread is too small and that many observations
fall outside the extremes of the ensemble. A dome-shaped indi-
cates a too large ensemble spread with most observations falling
near the centre of the ensemble. Asymmetric rank histograms are
caused by a biased forecast system.
4. Results

4.1. Visual comparison of flow hydrographs

The three kinds of predictor described above are derived from
the simulated ensemble discharges for five lead times between 1
and 5 days. Thus, we obtained 15 predictors for a 512-day period
of 3-h normalized discharge to compare with the observations. A
graphical comparison of the three predictors is shown in Fig. 3,
for an observed event occurred in June 2009, together with the cor-
responding forecasts with fixed lead time of 4 days (i.e., 72–96 h).
The top panel shows the EPS with blue shadings indicating differ-
ent probabilities around the median (i.e., the darkest polygon).
Each line among two different shadings of blue corresponds to a
value from the sorted streamflow ensemble of 16 members. Simi-
larly, the bottom panel indicates with different purple shadings, KQ

quantiles taken from the gamma distributions obtained for each
time step. For coherent graphical comparison with the top panel,
KQ values are calculated at quantiles corresponding to
F(KQ) = {1,2, . . . ,m}/(m + 1), with m = 16 as the EPS sample size.
However, for each time step, a full gamma distribution is defined
within the domain [0,1). This is a first important property of con-
tinuous distributions, as it overcomes the inconsistency of the EPS,
which assumes a probability of occurrence equal to zero for each
value outside its range. By comparing top and bottom panel in
Fig. 3, one can see the more regular variations of the fitted distribu-
tions compared to the EPS, as well as a reduction of the probability
associated to values much different from the other EPS members.
For example, the outlier in the EPS on 01/06/09 is significantly
damped in the corresponding gamma fit. Further, the inset figure
on the right shows the empirical (EPS) and fitted (gamma) cumu-
lative distribution function of the normalized discharge for one
time step, indicated with a dashed line in the two panels. The ob-
served value is also plotted with a vertical dashed line in the inset
figure.

Two skill scores widely used in hydrological forecasting have
also been calculated for each of the five forecast lead times (LTs)
and are displayed in Table 1. In the first row, the Continuous
Ranked Probability Score (CRPS, e.g., Hersbach, 2000) evaluates
the integrated squared differences of the EPS against the vector
of observations. In the second row, the Nash–Sutcliffe efficiency
(NS, Nash and Sutcliffe, 1970) of the EPS mean is shown. Both skill
scores denote the highest performance with lead time between 3
and 5 days. In details, the CRPS ranges between 1.4% and 1.8% of
the mean of the annual maxima of discharges, while the



Fig. 3. Four-day forecast of normalized discharge at Lavertezzo for one event. EPS (top panel) and gamma fitted quantiles (bottom panel) are shown with blue and purple
shadings together with the EPS mean (blue solid line) and the normalized observations (black solid line). Empirical and fitted cdf for one time-step are shown in the inset
figure, with observed value plotted with a red dashed line. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this
article.)

Table 1
CRPS of the EPS and Nash–Sutcliffe (NS) efficiency of the EPS mean, towards the
forecast lead time between 1 and 5 days (17-month simulation).

LT1 LT2 LT3 LT4 LT5

CRPS (EPS) 0.018 0.015 0.014 0.014 0.014
NS (EPS mean) 0.32 0.36 0.46 0.48 0.44
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Nash–Sutcliffe efficiency is always positive, with a maximum value
on the 4-day lead time.

4.2. Probability plot

Fig. 4 shows the probability plot of the ensemble predictions for
each considered forecast lead-time. Kolmogorov statistic (see e.g.,
Stephens, 1974) at 5% significance level is calculated and shown
Fig. 4. Probability plot of the ensemble predictions for each considered forecast
lead-time, together with Kolmogorov confidence bands at 5% significance level.
in the graph through confidence bands parallel to the bisector.
The five curves show a similar behavior, with significant over-pre-
dictions around the central quantiles (i.e., ji = 0.3–0.8). Note that
this bias is quantified in the graph in terms of cumulative distribu-
tion, but does not necessarily translate to large quantitative over-
estimations in the range of high flows. For example, the median
quantile of the forecasted distributions (zi = 0.5; KQ,F � 0.025), cor-
responds to a much larger theoretical quantile (i.e., of the observa-
tions) ji = 0.65–0.70, though the quantitative forecast is about 1%
larger (i.e., KQ,O � 0.035), compared to KQ ;O, for all the lead times.
For larger quantiles (i.e., ji � 0.8) the observed and forecasted dis-
tributions become more uniform, with only the 1-day lead time
being outside the 5% confidence bands. A possible explanation to
this behavior is the use of initial conditions taken from a different
model at coarser resolution (Alfieri et al., 2010). In fact, as men-
tioned in Section 2.1, this approximation was shown to produce
positive prediction errors becoming negligible for high flow condi-
tions, which are the cases of highest interest in flood warning
systems.
4.3. Mean squared error and variance

The left column of Fig. 5 shows the quantitative performance of
the three predictors against the estimation quantile, for the five
aforementioned lead times between 1 and 5 days (one for each pa-
nel). For each predictor two lines are plotted: the top one is the
MSE(x), while the bottom one is the variance r2(x). In the five left
panels of Fig. 5 (i.e., full data set) almost all the error is attributed
to the estimation variance, while the bias is negligible for all the
quantiles of estimation. Results for the EPS mean are shown as hor-
izontal lines, as it does not depend on the estimation quantile. The
ensemble mean proves to be a reliable (i.e., with little bias) and
precise (i.e., with low variance) estimator. The EPS and the gamma
fit provide similar results, with optimal values of both MSE and bias
always around the median (i.e., 50% quantile). Further, the error
variability tends to increase with the forecast lead time, though



Fig. 5. Mean squared error (top lines) and variance (bottom lines) of the estimation
residuals towards the quantile, for the three tested predictors. Results are displayed
for the full data set (left column) and for a subset of high flows with KQ,O > 0.3 (right
column). Each row shows a different lead time range between 1 and 5 days.

Fig. 6. Empirical cumulative distribution of observed and forecasted normalized
discharge for five lead times on gamma probabilistic paper. Threshold value for high
flow is shown with a dashed vertical line.
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values with the lowest MSE occur in the 3 and 4 day lead-time
windows.

The quantitative analysis of the prediction error was carried out
also for a subset of observed high flow, that is, for those time steps
when the observed discharge was above a certain threshold. The
threshold for this analysis KT

Q ;O was chosen as a tradeoff value be-
tween (I) being representative of an actual high flow condition that
follows a significant rainfall event and (II) having a minimum num-
ber of events to analyze. Results are shown in the right panels of
Fig. 5. The adopted value KT
Q ;O ¼ 0:3 resulted in eight hydrograph

portions above threshold (see Fig. 2). Due to the limited period of
record, the chosen threshold is a relatively low discharge in terms
of flood flows and does not correspond to a significant flood haz-
ard. However, it is a first useful step to understand the perfor-
mance of the system and to address further analysis. As shown
in Fig. 6, the threshold KT

Q ;O ¼ 0:3 corresponds to about the 99%
quantile of the observed discharge and the 98–99% quantile of
the ensemble forecasts for the five lead times. Also, it is worth not-
ing from Fig. 6 that forecasted high flows for the five lead times are
well fitted by gamma distributions with the same shape parame-
ter, as points of the upper tail of their empirical cumulative distri-
butions follow straight lines in a gamma probabilistic space.

Results in Fig. 5 denote a roughly constant contribution of the
estimation variance (bottom one of each line type, in the five right
panels) for a wide portion of the quantile range, up to the 80%
quantile, for all the different lead times and predictors. Again, the
difference between top and bottom line for each predictor mea-
sures the squared bias of estimation. For high flows, the bias be-
comes a significant portion of the total error. The gamma fit
provides slightly improved performances compared to the original
EPS, particularly for the largest lead times where the MSE reaches
lower absolute values. The EPS mean produces its best results (i.e.,
minimum MSE) for lead time of 3 days; with performance progres-
sively decreasing towards the boundaries of the forecasting range
(1 and 5 day lead time). However it generates MSE values that
are below those of the two probabilistic predictors for most of
the quantile range. In fact, the EPS and the gamma fit provide im-
proved results around the 70–90% quantile range, suggesting a
generalized underestimation of the observed values for lower
quantiles. Interestingly, the increased spread of the ensemble with
lead time is reflected in an increasing spread of the bias towards
the quantiles, while the estimation variance does not vary signifi-
cantly with the forecast lead time.
4.4. ROC area

Fig. 7 shows four plots of AROC towards the forecast lead time,
for the EPS and the gamma fit (triangles and diamonds, respec-
tively, joined by solid lines). Results in the left panels refer to
threshold values KT1

Q ¼ 0:3 (top) and KT1
Q ¼ 0:5 (bottom). For exam-

ple, in the top-left panel, results suggest very good performance
(i.e., AROC values approaching 1) of both methods for lead times



Fig. 7. Area under the ROC curve (AROC) for EPS and gamma fit, both for the full dataset (solid lines) and for high flows (dashed lines). Results are shown for two warning
thresholds (top: KQ > 0.3; bottom: KQ > 0.5) and for single forecast (left) and 2-day persistence (right).

Fig. 8. Rank histograms of the normalized ensemble discharges for lead time from 1
to 5 days, together with standard deviation of the frequencies.
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between 2 and 5 days, with only the 1-day lead time providing
lower values, especially for the EPS. This outcome is misleading
as it does not reflect the true performance in predicting threshold
exceedances. In fact, it is dominated by both observed and fore-
casted low flow values, well below the threshold, that represent
the largest proportion of the time series (98–99% as shown in
Fig. 6). To correct for it, we repeated the analysis for a subset of
time-steps where either the normalized observed discharge or
the forecasted EPS (i.e., at least one member) was larger than the
warning threshold. By its definition, this is a different (larger) sub-
set than the one used in the quantitative analysis shown in the
right panels of Fig. 5, which also enables the detection of false
alarms (i.e., observed discharge below threshold along with corre-
sponding non-zero probability in forecasted threshold exceed-
ance). Results of the latter analysis are shown in each panel of
Fig. 7 for the two probabilistic predictors, with the respective sym-
bols connected by dashed lines. One can note in Fig. 7 (left panels)
that the performance of the threshold exceedance analysis is gen-
erally higher for forecast lead times of 3–5 days, while it deterio-
rates for shorter lead times. The gamma fit leads to a significant
improvement in comparison to the EPS, particularly for the highest
of the selected thresholds (bottom-left panel).

4.5. Rank histogram

A further analysis was carried out to investigate the reason of
forecast performance improving for higher lead time. Intuitively,
one would think that the highest forecast skills are achieved
towards the beginning of the forecasting range, though our results
show the opposite. We plotted in Fig. 8 the five rank histograms,
also called Talagrand diagrams (see e.g., Hamill, 2001), of the
forecasted ensemble for the five lead times. Fig. 8 indicates a signif-
icant underdispersion of the EPS, with 68% (for 5 day lead time) to
88% (1 day lead time) of the observations falling outside the EPS
range. The standard deviation (sd) of the 17 classes is shown for
each line, indicating that the underdispersion of the EPS increases
as the lead time decreases. In fact, optimal diagrams have values
close to the uniform distribution shown by the horizontal dashed
line and standard deviation approaching zero.
4.6. Lagged forecasts

Lagged forecasts have become of widespread use in many oper-
ational warning systems (Cloke and Pappenberger, 2009). Previous
studies (Bartholmes et al., 2009; Thiemig et al., 2010) showed the
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improved skills of persistently forecasted warnings against single
forecasts by using a boolean approach. In these, a flood warning
is issued when more than one consecutive meteorological forecast
produces threshold exceedances of a specific quantile of the
ensemble. Here, the concept of forecast persistence is applied in-
stead in a probabilistic way and analyzed over the full range of
probability thresholds through the ROC curve. The probability of
exceedance is calculated from the number of forecasted discharge
over threshold for each time step, taken from two consecutive fore-
casts. For the EPS predictor, this is equivalent to considering a new
ensemble with twice the size of the original one, which means 32
members for COSMO-LEPS forecasts. Similarly, for the gamma fit,
the total probability of threshold exceedance is calculated by fit-
ting a gamma distribution for each time step and lead time, on
the new ensemble of increased size (32 members).

Results of the threshold exceedance analysis with 2-day fore-
cast persistence are shown in the right panels of Fig. 7 for two dif-
ferent warning thresholds, both for the full dataset (solid lines) and
on the subset of discharge over threshold (dashed lines). For each
lead time d in the abscissa, AROC is calculated from the forecasts
at day d and d + 1, while results for the highest lead time (i.e.,
5 days) are left as in the left panels, without considering the persis-
tence. The graphs denote a generalized benefit derived by consid-
ering the forecast persistence, which is more evident for the first
two forecast lead times and in general for the EPS predictor.
5. Discussion

An overview to figures and results of different analyses allows
us to draw some considerations on the performance of the estima-
tion, both as comparison among the tested predictors for the vari-
ous forecast lead times and as overall evaluation.
5.1. Model performance

Both the quantitative analysis and the threshold exceedance
analysis show similar results from the 3rd to 5th day of the fore-
cast. The performance of estimation decreases for shorter lead
times, particularly in the range of high flows as shown in Figs. 5
and 7. This behavior is partly due to the underdispersion of the
EPS, clearly visible in Fig. 8, which is progressively reduced as long-
er lead times are considered. Indeed, COSMO-LEPS was mainly de-
signed for the medium range forecast between 3 and 5 days
(Marsigli et al., 2005).

The second important reason is the uncertainty in the initial
conditions as they are taken from a different hydrological model
at coarser resolution. However, this is a necessary step to take for
reducing the computational requirements of the system and pro-
viding timely flood alerts. Operationally, the hydrological simula-
tion at fine resolution (1 km, 3 h) is run only for those catchments
where a signal for possible upcoming floods is detected. Results in
Fig. 4 confirm the findings of a recent work, showing that this
approximation induces a positive bias in the simulated discharges,
which becomes negligible for high flows. In addition, the initial con-
ditions used do not represent correctly the initial water stage and
discharge, as the modeled river networks at 1-km and at 5-km res-
olution are different. As a result, considerable errors are produced
when the beginning of the forecast range occurs in between a
rainfall event already started. Quantitatively, one can note in the
top-right panel of Fig. 5 that the full quantile range of the EPS is
underestimated for the 1-day lead time. Indeed, the bias becomes
negligible only for the highest quantile, where the variance is large
and affects the overall performance of estimation (MSE).

Weather predictions are commonly recognized to produce the
largest proportion of the total estimation uncertainty. However,
the uncertainty range would increase if the parameter uncertainty
of the hydrological model was considered, compensating part of
the streamflow variability that the meteorological input data cannot
explain. Recent works showed possible improvements to systems
based on LISFLOOD hydrological model by including the model
parameter uncertainty (Feyen et al., 2007) and the total uncertainty
through a Bayesian post processor (Bogner and Pappenberger, 2011).

5.2. Impact of spatial and temporal resolution

Some considerations on the overall performance of estimation
must be addressed to the impact of spatial and temporal resolution
of the hydrological model and of the input data, with regard to the
scales of the process under study. Although COSMO-30y climatology
enables the estimation of coherent warning thresholds, some bias of
estimation can occur for high flows, depending on the space–time
resolution of the precipitation input data and its relation to the
catchment size and the response time. Several literature works
(e.g., Berne et al., 2004; Carpenter and Georgakakos, 2004; Krajew-
ski et al., 1991) showed that the use of precipitation data with coarse
space–time resolution leads to considerable underestimation of the
peak flow, especially for small catchments prone to flash flood
events (Reed et al., 2007; Sangati and Borga, 2009). On the other
hand, the proposed system is designed to be independent of local
measurements, such as from rain-gauges, weather radars, so that
it can be easily applied to a wide range of catchments in much larger
domains (e.g., the whole COSMO-LEPS domain). Results of our sim-
ulations indicate that, although the overall estimation bias is a neg-
ligible portion of the total error (see Fig. 5, left column), high flows
are on average underestimated (Fig. 5, right column). This is also re-
flected in the threshold exceedance analysis in Fig. 7 as a deteriora-
tion of results as higher warning thresholds are considered. As a
result, a maximum threshold value could be derived, above which
the system does not provide any added value compared to random
forecasts. The limited length of the available dataset does not enable
robust analyses which consider higher warning thresholds. How-
ever, this can be overcome in future analyses by expanding the test
dataset through the simulation of several catchments at the same
time, to include a higher number of extreme events. Such assess-
ment is likely to show improvements of the system performance
as bigger catchments are considered. Indeed, increasing the catch-
ment area has a twofold benefit of (I) reducing the scale issues con-
cerning the resolution of the meteorological input data versus the
catchment size. (II) Similarly, location errors in the weather predic-
tions have a reduced impact on the streamflow prediction, as the
catchment area increases (see Vincendon et al., 2011).

A further source of uncertainty arises in the comparison of re-
sults, due to the temporal resolution of the observed dataset used
for validation. For coherent comparison, observed discharge are
resampled with the same temporal resolution of the forecasted dis-
charge, which in EFAS-FF is set to the temporal resolution of the
precipitation input data (i.e., 3 h). Catchment reaction to precipita-
tion becomes faster as the upstream area decreases. Thus, the ob-
served discharge can vary significantly within the time step
duration, though only one value is taken as reference. In this work,
3-h values were derived by resampling hourly observations. We
calculated a mean absolute variation of 3.7% among all the possible
sets of three discharge values within each sampling interval. This
becomes 21% if only the time steps corresponding to observed high
flows are chosen (i.e., KQ,O > 0.3), with a maximum 3-h range
DKQ,O = 0.67 in the available time series. Such a difference is likely
to be higher if finer resolution data were considered (e.g., 5 min
observations). This limitation affects every flood warning system
driven by weather predictions. Although there is no easy solution
to overcome it, it is important to be considered in the evaluation
of the system uncertainty, particularly for the smallest catchments.
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5.3. Features of an early warning system

A final remark in the evaluation of the forecast performance
is related to errors in the timing of simulated and observed high
flow events. In early warning systems, when the considered fore-
cast lead time is of the order of 3–5 days, a shift of the predicted
peak flow from the observed one of ±12 h can be accepted and
should not be accounted as a bad forecast (see, for example,
Fig. 3). When observed and predicted discharges are compared
at the same time steps, as in this work, the threshold exceed-
ance analysis results in an increased number of both missed
forecasts and false alarms, while some of them actually corre-
spond to good forecasts. Such issue mainly affects flash floods
in small catchments, where the threshold exceedance of flood
hydrographs is often sudden and short-lived. Thus, the actual
forecast performance, as shown in Fig. 7, would increase if a
time buffer of some hours were considered in the comparison.
Operationally, it translates to switching to an event-based anal-
ysis, where only simulated and observed peaks over threshold
are matched in time and compared. Such analysis was not car-
ried out here, as a larger number of events with peak discharge
over threshold are needed to draw consistent evaluations. Simi-
larly to the issue discussed in Section 5.2, this can be tackled by
increasing the number of severe events, selecting them from sev-
eral catchments in different regions.
6. Conclusions

This paper presents a new system for flash flood early warning,
designed to monitor small to medium size catchments (up to
1000–2000 km2) within a large portion of the European domain.
The system is based on the hydrological simulation of ensemble
meteorological forecasts at selected catchments, where a signifi-
cant probability of upcoming severe precipitation is detected.
Hydrological simulations were run in operational-mode over a
17-month test period for a case study in the southern Switzerland.
Forecasted ensemble discharges are compared with observations
at the catchment outlet and the system performance is assessed
through quantitative evaluation and threshold exceedance analy-
sis. Three novelties have been introduced and evaluated in the pro-
posed approach. They are summarized below.

– The use of a simulated meteorological reforecasts dataset
(COSMO-30y), consistent with operational ensemble forecasts,
is used to derive a discharge climatology and, in turn, coherent
warning thresholds. The broad spatial extent and the compara-
tively fine space–time resolution of COSMO-30y can enable
unprecedented applications of such methodology for small-
scale phenomena such as flash floods, at the continental level.
Future work will focus on setting up such a system on the full
spatial domain covered by COSMO-LEPS forecasts.

– Ensemble streamflow predictions are inferred with gamma
probability distributions and tested as predictors within the
flood warning system. This approach is aimed to describe con-
tinuously the spectrum of possible future evolutions and the
probability linked to each value. Also, it overcomes the inconsis-
tency of assuming a zero probability of occurrence for values
outside the EPS range.

– The benefit of forecast persistence in predicting threshold
exceedances is evaluated objectively. New ensembles of
increased size are considered (i.e., 32 members), which include
discharge prediction for the same time steps, derived from two
consecutive forecasts.
Further, this study has led to important findings, which are
summarized in three main points:

– The fitting of ensemble streamflows through gamma probability
distributions was found to be the best choice to use within
EFAS-FF. The improvements of this approach against the raw
EPS are most evident in the quantitative analysis of high flows
and in the threshold exceedance analysis, which is of main
interest in flood warning systems. Quantitatively, the EPS and
the gamma fit yield increased performances provided that
appropriate probability thresholds are chosen. In this regard,
the EPS mean is a valid alternative which avoid the choice of
a probability threshold and provides accurate results compared
to the two probabilistic predictors for a wide portion of the
quantile range.

– Considering the persistence of consecutive forecasts is found to
improve the performance in predicting threshold exceedances,
through the use of ROC curves, particularly in the lead time
range 0–48 h. This confirms the findings of previous works by
means of a new objective approach.

– Results show that the space–time resolution of forecasted
precipitation input is often coarse to reproduce the true var-
iability of storms producing flash-floods. As a result, high
flows were on average underestimated for the selected case
study. This error would be reduced in larger catchments,
where flood events are generated by storms of longer dura-
tion and broader extent, which are better captured by NWP
models. At the typical scales of flash floods, uncertainties play
a significant role in early warning systems. Yet, early warn-
ings for flash floods can be extremely useful to timely inter-
vention plans even in uncertain conditions, provided that
adequate information on the related uncertainty is effectively
communicated to the end users.

Despite the relatively short duration of the test period (i.e.,
17 months), the continuous simulation approach allowed us to
draw useful indications on the system performance, by accounting
both correct predictions and false alarms. The main limiting factor
was the availability of homogeneous operational weather forecasts
for longer time spans, with the same model setup as the simulated
climatology. In fact, these are periodically subject to updates of the
space–time resolution and of the model version. The analysis of
different other catchments is one possible solution to increase
the number of high flow events and thus deriving robust perfor-
mance analysis which consider more severe warning thresholds.
Some margin of improvement is offered to the proposed approach
by the recent update of COSMO-LEPS forecast model, occurred in
December 2009, to a finer spatial resolution (i.e., 7 km � 7 km),
that came along with an increase of the integration domain. A
coherent climatology was also calculated with the same model set-
up, covering a 20-year time span starting in 1989.

Future analyses will focus on an event-based approach through
a time window of appropriate duration, which compensates for
small time lags between simulated and observed flood peak refer-
ring to the same event. This approach improves the threshold
exceedance analysis both in terms of False Alarm Rate and Hit Rate,
thanks to an appropriate matching of simulated and observed flood
events. Thus it reflects more correctly the performance of the
warning system.
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