Intensity thresholds

Based on the rock kinematic energy:

$$E_{kin} = \frac{1}{2}mv^2$$

(Velocity usually between 5 and 30 m/s)

300 kJ: Energy that can be absorbed by a reinforced concrete wall 30 kJ: Energy that can be absorbed by a wooden railroad tie (sleeper)

Source: Lateltin (1997)

Photo: wikipedia

Frequency thresholds

JANG

One scenario for each frequency class, representing the bigger individual block falling in the interval class

Example in Andora (Corominas et Mavrouli 2013):

0-30 ans \rightarrow 25 m³ 30-100 ans \rightarrow 66 m³ 100-300 ans \rightarrow 152 m³

The frequency at wich a given block size is overpassed can be approximated by a power-law distribution of the form T=aV^b with : T: return period a: scale parameter (position of the line on the graph) b: shape parameter (slope of the line on the graph, depends on the rock characteristics) V: volume) Dussauge-Peisser et al. (2003)

Frequency-size relation

Consequence: the size of the source area matters, since it modifies the parameter « a » of the distribution (Hantz 2010). These statistics are for a big area, but usually, a « normal » individual cliff is considered in the Swiss methodology (although no dimension is prescribed) Exemple in Andorra (extrapolated from Corominas & Mavrouli 2013):

0-30 years → 25 m³ 30-100 years → 66 m³ 100-300 years → 152 m³

If the size of the study area doubles, the frequency doubles (if the conditions are exactly the same). As a result, the volume for a given return period increases :

0-30 years \rightarrow 43 m³ 30-100 years \rightarrow 111 m³ 100-300 years \rightarrow 260 m³

Propagation analysis

When the scenarios have been identified (i.e. characteristic volumes for each return period), the next step is to estimate the propagation in terms of:

- Affected area (propagation distance)
- Energies
- (Flying height, for mitigation design)

Photo: Guzzetti et al.

Propagation analysis: motion types

Source: F. Humair

UNIL | Letteraité de Louise me

Modeling approaches

Free fall

If the block falls directly on the ground without propagating further, the energy is estimated with:

$$E_{impact} = m \cdot g \cdot h$$

2D

UNIL | Lotreralde de Louise me

Intensity zoning

- Intensity maps are based on the trajectographic results
- No consideration of the propagation probability (zoning based essentially on the energy)

Danger map (higher level is kept, expert judgment for the squares with diagonals)

UNIL | Lotreraité de Louise me

OVERVIEW OF THE OTHER PHENOMENON

Slow-moving landslides

Zoning based on the velocity...

- Low: 0-2 cm/y
- Medium: 2-10 cm/y
- High: >10 cm/y

... And special conditions :

- D: differential movements (DD: high)
- R: potential of fast reactivation (RR: high potential)
- T: favorable conditions (homogenous movement)

Bollinger et al. (2004)

stark

mitte

schwach

Intensität

ᆔ

₽, R

DD, RR

Shallow landslides and mudflows

Lateltin (1997) recommends to evaluate the danger as follow :

- Red: deposit thickness
 1 m or thickness of
 the mobilizable layer
 >2 m
- Blue: deposit thickness <1 m or thickness of the mobilizable layer 0.5 m-2 m
- Yellow: thickness of the mobilizable layer <0.5 m

Current developments focus on the susceptibility evaluation®

Bollinger et al. (2004)

Debris-flow

The intensity is expressed in terms of:

- Height of the deposit (high intensity if > 1 m)
- Velocity (high intensity if > 1 m/s)

No low intensity is expected for debrisflows

Snow avalanches

The intensity is expressed in terms of pressure over on object on the way

Canton de Fribourg (2006)

UNIL | Lotreralité de Latura -me

CURRENT TRENDS

Main limitation of danger maps

- By itself, don't give enough information on the danger type (intensity and frequency) → intensity map are now mandatory
- Suitable for unconstructed areas, but what to do if a building is in a red zone?
- Is it suitable to build an hospital in a yellow zone?
- Is it an appropriate method for roads, hiking trails,...?

→ Hazard assessment is a necessary step, but further elements are needed for risk management

Protection objective

→ Different rules
 depending on
 the affectation
 (e.g. farming
 area or industrial
 facility)

FOWG (2001)

Risk analysis for Highways

Availability cost

Risk analysis including different kind of damage, in particular the availability cost, to account for the consequences of a closure

It also focuses more on low intensity-low probability events.

Risk analysis for protection measures

 Funding of protection measure by the Confederation is based on a costbenefit analysis

Schweizerische Eidgenossenschaft Confédération suisse	Bundesverwa	Bundesverwaltung admin.ch	
	Department für Umwelt, Verkehr, Energie und K	Communikation	
Confederazione Svizzera Confederaziun svizra	Bundesamt für Ur	mwelt BAFU	
	Wirtschaftlichkeit von Schutzmassnahmen gegen Nat	turgefahren	
Startseite Übersicht Kontakt Glossar	Deutsch F	rançais Italiano	
Projektantrag Dokumentation FAQ	Über EconoMe		
EconoMe Login Startseite > Proje	ektantrag		
Passwort			
Projektantr	ag		
ОК			
EconoMe 1.0 Information			
EconoMe 2 Offline			
Füllen Sie das F dann an die zus	Formular bitte vollständig aus. Mit einem Mausklick auf Projektantrag absenden werden die eing tändige Kantonsverwaltung weitergeleitet	egebenen Daten	
Califi al de 203			
CHANGES Mil	FORMOSE – CHANGES Post-Graduate Course, Barcelonnette, 24-29 June 2013	67	

Risk =HVA

UNIL I Université de Laute m

Management strategy for the next 30 years: The Third Rhone Correction

Rhone and current land use management principle: the centennial flood is mitigate by widening the channel and the management of extreme flooding by the creation of back levees

1860 -1890: The first correction 1930 -1960: The second correction

Cost: ~ 1 billion CHF Duration \rightarrow 2030

Early work: Visp Chippis, Fully (200 Mio. CHF)

(**from:** Plan sectoriel 3^{ème} correction du Rhône Version pour consultation; Etat du Valais, MAI 2005)

Significant changes in land use

Break of embankment the Rhône river 2000

• Rupture of the dike of the Rhone at Chamoson (from Wuilloud, 2004)

Floods 2000

(from Bourban, 2001 et photod www.edicom.ch)

Rhône valley

• Floods in 1920 and 1935 in Sion area Conthey (From Bourban, B., 2001 photos From Torrenté 1962)

Flood in Saillon (OFEG, 2002)

Lavey-Bex (photos Sesa)

